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Abstract:

Research on the nature of the vibration data collected from helicopter transmissions during flight experiments
has led to several crucial observations believed to be responsible for the high rates of false alarms and missed
detections in aircraft vibration monitoring systems. This work focuses on one such finding, namely, the need
to consider additional sources of information about system vibrations. In this light, helicopter transmission
vibration data, collected using triaxial accelerometers, were explored in three different directions, analyzed
for content, and then combined using Principal Components Analysis (PCA) to analyze changes in direc-
tionality. In this paper, the PCA transformation is applied to 176 test conditions/data sets collected from an
OH58C helicopter to derive the overall experiment-wide covariance matrix and its principal eigenvectors.
The experiment-wide eigenvectors are then projected onto the individual test conditions to evaluate changes
and similarities in their directionality based on the various experimental factors. The paper will present the
foundations of the proposed approach, addressing the question of whether experiment-wide eigenvectors ac-
curately model the vibration modes in individual test conditions. The results will further determine the value
of using directionality and triaxial accelerometers for vibration monitoring and anomaly detection.
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Background and Motivation:

Detection of anomalies in rotating machinery during flight in high-risk aircraft is a challenging task. Ongoing
research at NASA Ames Research Center focuses on collecting in-flight and test-rig vibration data to study
the inherent statistical variations in rotating equipment vibrational response. The purpose of this research is
to identify factors that have the potential of invalidating the overall signal modeling assumptions for vibration
monitoring systems, potentially resulting in false alarms and missed detections [4, 12]. The results so far have
led to several interesting conclusions about the source of false alarms and missed detections. In this work,



one aspect is being explored, namely, the value of additional sources of information provided by the use of
multi-axis accelerometers.

Data from triaxial accelerometers have been studied initially to establish that different directions provide
information about different dynamic phenomena in the helicopter transmissions and engines [13]. In this
work, models of overall healthy and faulty triaxial vibration data are sought to identify changes in the direc-
tionality of the data. Principal components analysis (PCA) is used to rotate the three axes to obtain an optimal
direction, determined by the principal axis and its angles with the original axes. The following sections first
summarize the flight experiments and vibration measurements, along with some previous results using these
data. Next, the PCA approach is summarized and an application to a single test condition is presented as
an example. Finally, the relationship between the PCA eigenvectors for the whole set of test conditions and
PCA eigenvectors for a single test condition is explored using triaxial vibration data. More specifically, the
aggregated 176 data sets collected from an OH58C helicopter are used to derive the experiment-wide covari-
ance matrix and its principal eigenvectors. These eigenvectors represent the overall vibrational modes in the
data, which are then projected onto individual test conditions to determine their predictive value. It is hoped
that the results will contribute to the understanding of the value of triaxial recordings in vibration monitoring,
the potential of generating generalized data models for enhanced failure and anomaly detection in aircraft
systems, and, the value of using directionality as a metric for vibration monitoring and anomaly detection.

Helicopter Flight Experiments:

The present helicopter flight experiments were conducted by taking vibration recordings during a predeter-
mined set of flight conditions; these constituted fourteen maneuvers. The experiments are based on a latin
square design which counter-balances the flight conditions to assure that gross weight and ambient temper-
ature changes do not bias the results [4, 10]. The use of a carefully designed experiment allows for various
sources of variation and their interactions to be investigated and quantified in a systematic fashion. In this
experimental design, two pilots fly fourteen maneuvers each, and repeat each maneuver three times, in two
different sets. The maneuvers are selected based on discussions with the research pilots and are designed to
cover a representative set of stable conditions typical of helicopter flight. Each “flight” consists of 22 ma-
neuvers, resulting in 176 files (test conditions) total. Test conditions refer to each combination of maneuver,
pilot, training set, and order. The test conditions for the OH58C test flights are detailed in Table 1 for Flights
1-4 [13], which are repeated in Flights 5-8 to generate a second set of vibration data.

Triaxial Data Analysis:

Typically, vibration monitoring is performed using single-axis accelerometers placed radially on the trans-
mission housing [3, 5, 8]. The value in the directionality of the frequency content has been explored in
literature by using several single-axis accelerometers mounted in various directions [7]. This work indicated
the possibility of different signatures being emphasized in the different directions that were studied. While
acceptable for test stands, weight and space limitations prohibit the use of additional accelerometers in actual
helicopters. As a result, this work addresses the question of whether vibration measurements using triax-
ial accelerometers can provide an effective technique to categorize baseline changes due to the statistical
variation in the vibration data, collected from an OH58C helicopter transmission gearbox.

For this set of experiments, the accelerometers were mounted on the bolts around the housing at four
locations. A specially-designed HealthWatch-I data collection system collects eight channels of data includ-



Table 1: Experimental design for flights 1-4.

Flight Pilot Set Sequence Flight Pilot Set Sequence

1 1(d) 1 G, Ground 2 1(d) 1 G, Ground
H , Hover H, Hover
A , FFLS I, HTL
B , FFHS J, HTR
C , SL K, CTL
D , SR L, CTR
E , FCLP M, FCHP
F , FDLP N, FDHP
B , FFHS J, HTR
C , SL K, CTL
D , SR L, CTR
E , FCLP M, FCHP
F , FDLP N, FDHP
A , FFLS I, HTL
C , SL K, CTL
D , SR L, CTR
E , FCLP M, FCHP
F , FDLP N, FDHP
A , FFLS I, HTL
B , FFHS J, HTR
H , Hover H, Hover
G , Ground G, Ground

3 2(h) 1 G, Ground 4 2(h) 1 G, Ground
H , Hover H, Hover
A , FFLS I, HTL
B , FFHS J, HTR
C , SL K, CTL
D , SR L, CTR
E , FCLP M, FCHP
F , FDLP N, FDHP
C , SL K, CTL
D , SR L, CTR
E , FCLP M, FCHP
F , FDLP N, FDHP
A , FFLS I, HTL
C , SL K, CTL
D , SR L, CTR
E , FCLP M, FCHP
F , FDLP N, FDHP
A , FFLS I, HTL
B , FFHS J, HTR
H , Hover H, Hover
G , Ground G, Ground



ing vibration data from three single-axis accelerometers and one triaxial accelerometer [4, 13]. The channels
were sampled at a rate of 50kHz per channel, for a duration of 34 seconds, corresponding to over 190 revo-
lutions of the output rotor [5].

The frequency content was analyzed for each test condition to determine the differences observed in the
three directions of the triaxial accelerometer [13]. In an attempt to isolate frequencies specific to different
gears in the transmission, the raw vibration data were averaged using time-synchronous averaging (TSA)
techniques [1, 2, 9, 11]. In this paper, results are reported using data computed from the raw triaxial ac-
celerometer data averaged based on one revolution of the pinion gear (referred to as the “TSP data”, N = 512
sample points) [13]. The power spectra for the TSP data contain all frequencies that are synchronous with
the pinion gear rotation, as shown in Figure 1 for the case of the TSP data set using Flight 1, file 4, maneuver
FFLS as an example. The x-axis of the spectra is presented in frequency ”counts”, which corresponds to
the frequency divided by the rotational frequency of the gear of interest, or ”shaft order”. For example, for
the TSP data, a frequency component at bin 19 will correspond to the pinion mesh frequency, equal to the
number of teeth (Nteeth = 19) in the pinion multiplied by its rotational frequency.
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Figure 1: Power spectra in X, Y, and Z directions, triaxial accelerometer, TSP data. Flight 1, file 4, maneuver
FFLS (Forward Flight, Low Speed).

The results of this analysis showed that each of the three directions can be used to monitor different
components of the frequency distribution, highlighting a potential benefit of using triaxial accelerometers in
addition to single-axis accelerometers [13]. This becomes much more evident in the case of actual flight con-
ditions where different maneuvers can result in an increase or decrease of the vibrational energy in different
directions. The results also give additional insight about the directionality of the vibration depending on the
gear set under study.

PCA-Based Triaxial Analysis Method:

Triaxial vibration data can either be analyzed separately in each of the three measurement directions, or
combined in some mathematical form for analysis. The methodology in this paper performs a Principal



Components Analysis (PCA) on the triaxial data to put the three axes of measurement into one “princi-
pal axis” with maximum variance [6, 13, 14, 15]. This method of combining the three axes of vibration
recordings hierarchically reorganizes the orthogonal variations, while removing the correlation between the
physical recording axes. The following presents the foundations of this technique by applying it to empir-
ical data collected during flight. In the following subsections, PCA transformation is first performed on a
single test condition, followed by a transformation using the entire set of experiments to derive generalized,
experiment-wide eigenvectors. The generalized eigenvectors are then compared with the eigenvectors from
individual test conditions to determine whether they can be used to predict the vibrational modes for each test
condition. If the answer is yes, then the generalized eigenvectors can be used as a model of the “baseline”
state of the dynamic system. Using the generalized eigenvectors, new test conditions can then be tested to
determine their “health”.

PCA Transformation on a Single Test Condition

To illustrate the mathematics of the proposed approach, vibration data from the triaxial accelerometer for
Flight 1, file 4, Maneuver FFLS are used as an example. The n�m input matrix for these data becomes X =
[XYZ], where the columns X , Y , and Z correspond to the vibration data from the triaxial accelerometer for
one test condition, synchronously averaged based on one revolution of the pinion gear (TSP data, n = 512).
(X is the vertical direction, Y is the tangential direction, and Z is the radial direction.) It is assumed that the
X , Y , Z data have been centered (mean is removed). For PCA, the m = 3 columns correspond to variables,
and the n = 512 rows correspond to observations. PCA results in three output matrices, namely PC, SC,
and LAT . The eigenvectors of the m�m (m = 3) covariance matrix correspond to the columns of the m�m
(m = 3) PC matrix. The n�m (512�3) SC matrix corresponds to the rotated variables, where each column
corresponds to each principal component. The m� 1 (3� 1) LAT vector contains the eigenvalues for each
eigenvector (variance of each of the score columns.) PCA (performed in Matlab) for this example results in
the following outputs:

LAT =

2
4

365:1637
40:9655
14:8314

3
5 PC =

2
4

0:1324 �0:9142 �0:3830
0:9680 0:2024 �0:1486

�0:2133 0:3510 �0:9117

3
5

Algebraically, the principal components are linear combinations of the original variables X , Y , and Z
(centered), which represent the selection of a new coordinate system after rotating the original coordinate
system [6]. The first principal component, whose coefficients (eigenvectors) are indicated in the first column
of the PC matrix, is the linear combination with the highest variance, described as 0:1324X + 0:9680Y �
0:2133Z (using centered variables X , Y , Z). This is computed as X�PC, which is equivalent to the columns
in the SC matrix. The coefficients imply that the leading principal component is weighted most by the original
Y axis (0:9680 in the PC matrix), and about equally by the other two original axes. By contrast, the second
principal component is weighted most by the X axis (�0:9142), and the third principal component by the Z
axis (�0:9117). If the physical axes were set up perfectly for the original triaxial data, these weights would
be 1.0, and the remaining weights would be equal to 0. The variance of the first principal component is equal
to the first eigenvalue (the variance of the first column of the score matrix), computed as the first element in
the LAT vector. The first principal component accounts for 86:75% of the total variance with an eigenvalue
of λ1 = 365:1637, whereas the second principal component accounts for 9:73% of the total variance with an
eigenvalue equal to λ2 = 40:9655.

Each column of the score matrix corresponds to the variation of the new eigenvectors (PC matrix) over
the n = 512 observations. A plot of the scores is shown in Figure 2 for each of the eigenvectors. The
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Plot of Scores for the three eigenvectors.  Flight 1, file 4, maneuver FFLS. 

Figure 2: Scores: variation of the PCs over all observations (TSP data, flight 1, file 4, maneuver FFLS).

first principal component represents the mode with the largest variance. Such plots can be used to monitor
changes in each of the principal components [15].
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Comparison of Spectra for X, Y, Z triaxial data vs. PCA Scores.   Flight 1, file 4, FFLS.

Figure 3: Power spectra of triaxial vibration data in X, Y, and Z directions vs. power spectra of scores from
principal components analysis. Flight 1, file 3, maneuver hover and flight 1, file 4, maneuver FFLS
(TSP Data, Nfft=512).

To demonstrate how PCA is used to decorrelate the three vibrational directions and find an optimal
direction for the triaxial accelerometer data, Figure 3 presents the comparison of the power spectra in the X ,
Y , Z directions with the power spectra of the scores for the new ”directions” described by the decorrelated
principal components SC1, SC2, and SC3, for two of the maneuvers, Hover and FFLS, flight 1, pilot 1 (files 3
and 4). As can be observed from these comparative plots, the tangential direction Y is equivalent in frequency
content to the first principal component scores (SC1) and the vertical direction X is equivalent to the second
principal component scores (SC2). The results throughout the experiment show that for the TSP data, the



triaxial accelerometer data are optimal in the sense that one of the directions corresponds to the direction of
maximum variance defined by the first principal component.

PCA Transformation on the Overall Experiment

As the PCA transformation extracts the principal “modes” of vibration from the input data, it is hypothesized
in this work that there will be similarities between the individual test conditions. If generalized modes of
vibration exist, the eigenvectors should look similar, with different weights for each test condition indicating
the changes due to the experimental factors (projection of each individual condition onto the experiment-wide
eigenvectors.) To test this hypothesis, the PCA transformation is performed on an input matrix that includes
all of the individual test conditions, concatenated into one large matrix. Each individual n�m input matrix is
Xi = [XiYiZi], where the columns Xi, Yi, and Zi correspond to the vibration data from the triaxial accelerometer
for one test condition, synchronously averaged based on one revolution of the pinion gear (TSP data, n= 512,
m = 3.) The overall input matrix Xall has all of the test conditions including 22 files for each of the 8 flights,
adding up to 176 files. The dimensionality of Xall is N�M, where N = 512�22�8 = 90112 and M = 3 in
this case. PCA (performed in Matlab) for the entire set of test conditions results in the following outputs:

LATall =

2
4

299:1607
59:4100
6:9852

3
5 PCall =

2
4
�0:1853 �0:9458 �0:2667
�0:9612 0:2310 �0:1511

0:2045 0:2283 �0:9519

3
5

As in the case of the individual test conditions, the coefficients in the PCall matrix indicate that the first
principal component (accounting for 81:94% of the total variance from the LATall vector) is weighted most by
the original Y axis (�0:9612), the second principal component (accounting for 16:25% of the total variance)
by the original X axis (�0:9458), and the third principal component by the Z axis (�0:9519). The scores for
the experiment-wide input matrix are shown in Figure 4(a) for the first N = 512 points for comparison with
the scores for the individual test conditions (see Figure 2). The power spectra corresponding to these scores
are shown in Figure 4(b) for comparison with the power spectra for the individual cases discussed in Figure 3.
The similarities between the individual egenvectors and the experiment-wide eigenvectors are apparent from
this comparison. Individual test conditions can be analyzed using the eigenvector models generated from the
entire set of experiments.

For example, a new test condition can be analyzed by projecting the vibration data onto the set of gener-
alized eigenvectors (representing the overall baseline state of the flight, including all vibrational modes). The
corresponding score matrices will determine whether the new test condition belongs to the general baseline
state or whether it deviates from it, implying a potential failure or defect.

To investigate the directionality of the individual test conditions compared to the principal directions
dictated by the experiment-wide eigenvectors, the angles of the principal components are compared next.
The main two angles that the first principal component for the experiment-wide case makes with the original
X , Y , Z axes (from Xall) are computed, followed by the angle of the first principal component computed
from each of the individual test conditions (from each Xi). Figure 5 shows a plot of the difference between
the individual angles and the experiment-wide angle (using the first angle θ, see [13] for details) for the first
principal component.

The changes in this angle indicate changes in the directionality of the first principal component, which
indicates the “optimum” direction of vibration (i.e., the mathematical direction with maximum variance.)
The x-axis represents the flights: test case 1-22 corresponds to flight 1, cases 23-44 corresponds to flight 2,
etc. As noted, two separate patterns in directionality are identified: flights f1;3;5;7g and flights f2;4;6;8g
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(a) Score Signatures.
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(b) Power Spectra of Score Signatures.

Figure 4: Experiment-wide PCA Score Vectors (the first N = 512 points are shown for comparison with
individual case; power spectra have been computed using Nfft = 512.)

are separated into two distinct patterns, representing two different sets of maneuvers [13]. Monitoring of di-
rectional changes of the principal components is hence likely to present a good means to distinguish between
these maneuvers.

Conclusions and Future Work:

This paper presents the foundations of an approach to use triaxial vibration measurements to determine
the health and condition of a dynamic system. Flight data collected using an OH58C helicopter are used
to demonstrate the mechanics of the proposed approach. Vibration data are collected using a triaxial ac-
celerometer and analyzed in each individual direction for potential changes and variations. The data in the
three directions are then combined using Principal Components Analysis (PCA). The PCA transformation
provides a means to analyze and monitor all three directions in a combined form. More specifically, a “prin-
cipal direction” is computed as a linear combination of the three axes from the vibration measurements,
maximized with respect to the total variance in the data.

In this paper, the proposed transformation is applied to the entire set of test conditions to derive “experiment-
wide” eigenvectors, which provide a model of the baseline (healthy) state of the dynamic system under study,
capturing the dominant vibrational modes. Each new test condition is then projected onto these generalized
eigenvectors to determine their state and condition. Deviations can be observed in the projection of new
states onto the generalized eigenvectors, indicating potential anomalies and developing failures in the sys-
tem. Finally, the changes in the directionality of the principal axis of vibration are monitored using the angles
the transformed axes make with the original axes of vibration. The example in this paper shows a clustering
by maneuvers, potentially presenting a useful metric for vibration monitoring.

Further research is necessary to investigate the value of projecting new (faulty) test conditions onto the
generalized eigenvectors for failure detection. The preliminary results, presented in this paper, demonstrate
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the potential value of using triaxial vibration recordings, in conjunction with the proposed PCA-based ap-
proach, to monitor changes in the vibrational signatures during flight. The observed differences in the PCA
output variables (eigenvalues, eigenvectors, or the derived rotation angles) need to be studied further to assure
that sufficient statistical sampling is provided and to understand their sampling distributions.
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